Async event loops in C#

time to read 4 min | 656 words

I’m designing a new component, and I want to reduce the amount of complexity involved in dealing with it. This is a networked component, and after designing several such, I wanted to remove one area of complexity, which is the use of explicitly concurrent code. Because of that, I decided to go with the following architecture:

image

 

The network code is just reading messages from the network, and putting them in an in memory queue. Then we have a single threaded event loop that simply goes over the queue and process those messages.

All of the code that is actually processing messages is single threaded, which make it oh so much easier to work with.

Now, I can do this quite easily with a  BlockingCollection<T>, which is how I usually did those sort of things so far. It is simple, robust and easy to understand. It also tie down a full thread for the event loop, which can be a shame if you don’t get a lot of messages.

So I decided to experiment with async approaches. In particular, using the BufferBlock<T> from the DataFlow assemblies.

I came up with the following code:

var q = new BufferBlock<int>(new DataflowBlockOptions
{
CancellationToken = cts.Token,
});

This just create the buffer block, but the nice thing here is that I can setup a “global” cancellation token for all operations on this. The problem is that this actually generate bad exceptions (InvalidOperationException, instead of TaskCancelledException). Well, I’m not sure if bad is the right term, but it isn’t the one I would expect here, at least. If you pass a cancellation token directly to the method, you get the behavior I expected.

At any rate, the code for the event loop now looks like this:

private static async Task EventLoop(BufferBlock<object> bufferBlock, CancellationToken cancellationToken)
{
while (true)
{
object msg;
try
{
msg = await bufferBlock.ReceiveAsync(TimeSpan.FromSeconds(3), cancellationToken);
}
catch (TimeoutException)
{
NoMessagesInTimeout();
continue;
}
catch (Exception e)
{
break;
}
ProcessMessage(msg);
}
}

And that is pretty much it. We have a good way to handle timeouts, and processing messages, and we don’t take up a thread. We can also be easily cancelled. I still need to run this through a lot more testing, in particular, to verify that this doesn’t cause issues when we need to debug this sort of system, but it looks promising.